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Voluntary movement is a result of signals transmitted through a communication channel that
links the internal world in our minds to the physical world around us. Intention can be considered
the desire to effect change on our environment, and this is contained in the signals from the
brain, passed through the nervous system to converge on muscles that generate displacements
and forces on our surroundings. The resulting changes in the world act to generate sensations
that feed back to the nervous system, closing the control loop. This Perspective discusses the
experimental and theoretical underpinnings of current models of movement generation and
the way they are modulated by external information. Movement systems embody intentionality
and prediction, two factors that are propelling a revolution in engineering. Development of move-
ment models that include the complexities of the external world may allow a better understand-
ing of the neuronal populations regulating these processes, as well as the development of
solutions for autonomous vehicles and robots, and neural prostheses for those who are motor
impaired.
Introduction
The way the nervous system generates movement has been

studied formally for about 150 years. Earlier work was based

on anatomical observations: the way the brain and spinal cord

were shaped and how one place in the system appeared to be

connected to another. This, combined with careful observation

of motor deficits and corresponding lesions of system struc-

tures, was the foundation of motor neurology. The introduction

of electrical stimulation in animal models added another dimen-

sion to motor systems experimentation. Along with targeted

lesions of different system components, these were the under-

pinnings of the original theories of motor control. Although the

complexities of relating anatomical structures to specific as-

pects of behavior were well recognized by motor control pio-

neers, results of lesion and electrical stimulation experiments

were viewed primarily in terms of fairly discrete connectivity

pathways that are now referred to as ‘‘circuits,’’ with the implica-

tion that they operate in a way that is similar to their engineered

counterparts, such as computers. More recently, experimental-

ists have been using technology that enables the simultaneous

recording of action potentials from many neurons while natural

movements are performed. Conventional concepts of discrete

circuits working with distinct functionality have been challenged

by experimental results that show that many neurons are active

together, with a large population throughout the neural axis

generating similar signals used for movement generation. This

evolution in the field of motor control offers new insights for

understanding purposeful behavior, as well as suggestions for

new design principles that could be implemented in engineered

systems.
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Movement—Reflex and Volition
Traditionally, movements have been divided into those subserv-

ing reflexes and those associated with purposeful action. Voli-

tional movement is the result of cognitive processes, which

lead to the exertion of some action on the world. These pro-

cesses are not clearly defined or understood, making it difficult

to develop concrete, rigorous models to describe the way they

operate. Although the resulting physical movement can be

measured well and task-related neural activity can be recorded

and correlated to themovement, in the absence of well-identified

drivers of neural activity, the meaning of an association between

any given neural pattern and the task will be open to debate.

Reflexes

In contrast to volitional movement, reflexes seem especially

amenable to the modeling approach used by engineers. Instead

of a process that begins with intention, the generation of reflexive

movement starts with sensation. A given stimulus (input) elicits a

setmotor action (output). As described by Sherrington at the turn

of the 19th century, these movements are stereotypical and

generated by neuronal action that takes place in an orderly

fashion beginning in the spinal cord, with elaboration by groups

of neurons in progressively ‘‘higher’’ neural structures such as

the hindbrain, midbrain, and cerebral cortex. Sherrington arrived

at this hierarchical scheme by surgically separating these

different structures and studying the remaining reflexive

behavior. He found that each level could be characterized by in-

puts and outputs, allowing system identification procedures

whereby mathematical transfer functions were used to predict

outputs given an input. This gave rise to the use of linear system

approaches (a linear equation that describes how output results
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from input) in the 1960s and 70s to describe reflex inception. One

of the first attempts in this regard was modeling the stretch re-

flex, based on the workings of the crayfish stretch receptor (Bor-

sellino et al., 1965). The process of transforming a physical

stretch into a train of impulses in the afferent fiber was consid-

ered to take place as a set of steps, each of which could be

modeled with a transfer function (the input-output equation)

(Loewenstein et al., 1963; Terzuolo and Washizu, 1962; Washizu

and Terzuolo, 1966). The same principles were subsequently

applied to the mammalian stretch receptor (Poppele and Ter-

zuolo, 1968; Roberts et al., 1971). Stretching the muscle (by

other muscles or external forces) activates the receptor which,

in turn, excites the muscle that contains it, causing the muscle

to shorten, effectively counteracting the stretch to maintain sta-

bility. Thus, reflexive movements act on the principle of feed-

back, where the output of the system is used to modify its input.

In this case, the feedback is negative because the stimulus

invoking the reflex is a lengthening of the muscle and the

response, muscle contraction, shortens it.

The use of linear systems analysis was also fundamental to

studies of the vestibular ocular reflex (Robinson, 1981), which

functions to stabilize images on the retinas when the head accel-

erates. Based on the same principle as the stretch reflex, this

system uses negative feedback to move the eyes in the direction

opposite of the head movement. In this case, head acceleration

from the semicircular canals of the vestibular system was

considered the system input, which is transformed to velocity

and position used to activate the extraocular muscles. We can

see that these examples of negative feedback conform to basic

engineering principles. However, even these basic reflexes are

constantly modified by the context in which they occur. For

instance, in mammals, the sensitivity of sensory muscle spindle

receptors is regulated by gamma motorneurons, which change

the stiffness of the receptor itself. The gamma motor neurons

are controlled by supraspinal structures, which are influenced

by the setting or context in which the subject is situated. Essen-

tially, the gamma system adjusts the gain of stretch receptors to

accommodate a predicted range of sensations that will be

encountered. Similarly, the vestibular-ocular reflex is modified

by output from the cerebellum, which can change the gain of

the reflex. Donning a pair of bifocals is an everyday illustration

of how feedback systems are readily modified. The glasses act

as prisms that displace the world so that a given eye movement

no longer results in the same shift of vision. After learning, the

gain (ratio of output to input) of the vestibular-ocular reflex is

adjusted rapidly to compensate for this change as soon as the

viewer peers through alternate lenses.

Reflex Action and Volitional Movement

Reflexes are effective during volitional movement, and they

contribute to the successful production of an intended action.

In laboratory experiments using instructed tasks, movement

intention is, at least partly, specified. The idea of ‘‘motor set’’ ex-

periments in the mid-70s and early 80s was to separate a voli-

tional component of the task (instruction) from that which was

more related to the mechanics of the movement (reflex). This

logic was followed in experiments (Evarts and Tanji, 1974) in

which monkeys were trained to move to a target in response

to a rapid displacement (‘‘go’’ signal) of the handle they were
holding. A target light served as the instruction and indicated

which of two directions to move before the go signal. Although

the handle displacement was the cue to move, its direction

had no behavioral meaning. Two types of neuronal responses

were found in motor cortical neurons. An early response

(20 ms) after the handle perturbation was correlated with the di-

rection of the rapid displacement. A later pattern of discharge

corresponded to the direction of the instructed movement (40–

50 ms) but was unrelated to the perturbation direction. The first

response was deemed to be reflexive and due to afferent input

elicited by the perturbation (since it carried directional informa-

tion unrelated to the subsequent behavior), while the second

was considered more volitional in that it was target related.

The subject’s response, as registered by the onset of muscle ac-

tivity, began 70 ms after the perturbation, and the movement

began 20 ms later. The same paradigm was used to study re-

sponses in the cerebellum (Strick, 1983) with the idea that the

early and late neuronal responses in the motor cortex may be

mediated by the cerebellum. Recordings in the dentate nucleus

showed that neurons changed their firing rates in a way that was

dependent both on the cued target and the direction of the

imposed perturbation. This dual dependency is interesting, since

the mechanics needed to move the arm to the target depend on

the initial position of the arm (which was altered by the perturba-

tion) and the position of the target. Even though the perturbation

direction had no behavioral meaning, the direction of the

prior perturbed displacement had to be accounted for when

generating the subsequent forces needed to make the volitional

movement. These experiments defined components of the con-

trol signals that may contribute to the generation of volitional

movement.

Reaching as Volitional Movement
Volitional movement is, by definition, the intended execution of

an action. These movements are often considered to be singular

events, even though, in real-world behavior, they take place in

a continuous cycle of action-intention-action (Johansson and

Flanagan, 2008). Nonetheless, because this chain is sequential,

there are delays between intention and action and then between

action and registration of that action via sensation. The first delay

requires the intention to be predictive; the second means that

sensory feedback cannot function in real time. This suggests

that there are distinct phases of the task that may be controlled

differently. During a reach for an object, the path of the hand is

divided into two components; the first is a rapid displacement

of the hand to the vicinity of the object, followed by a series of

smaller ‘‘submovements’’ (acceleration-deceleration) of the

hand until the target is reached (Meyer et al., 1982; Schmidt

et al., 1978). The initial component, which covers about 80% of

the distance, is on the order of 200 ms, whereas the second

component takes slightly less time. Before and during the reach,

the eyes are fixed on the target. Because the minimal time for a

visually mediated movement to take place is estimated to be in

the range of 190–200 ms (Beggs and Howarth, 1972; Cordo,

1987; Keele and Posner, 1968; Newell and Houk, 1983), it follows

that the first phase of the movement is essentially over before a

visual correction could be effective; this phase is often referred to

as ‘‘ballistic’’ because it was thought to take place in the absence
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of feedback (Hollerbach, 1982). Even accounting for propriocep-

tive loop times, which, as ascertained by perturbations, are

slightly shorter, at about 120–150 ms (Cordo and Flanders,

1989; Higgins and Angel, 1970), this would mean that only the

very beginning of the movement could be regulated by this feed-

back. Based on these considerations, the general view by the

late 1980s held that reaching was divided into two phases: an

initial ballistic component that transported the hand to a location

near the target, followed by a homing phase executed with visual

feedback as a series of small, fine movements used to acquire

the target.

Feedback Control

How could a movement take place in the absence of feedback?

In 1979, Polit and Bizzi (1979) hypothesized that arm movement

would automatically arrive at a pre-specified equilibrium point in

the absence of feedback. Muscles were considered to be much

like springs with adjustable stiffness. Stiffness is the ratio of force

to length. A pair of antagonist muscles around a joint would

have equal and opposite forces at a length (the equilibrium point)

that was dictated by each of their stiffnesses. By presetting the

stiffness of the arm muscles before a movement began, the

arm would naturally come to rest at the end of the movement

when the equilibrium point was reached (Feldman, 1986). In

this scheme, no control would be needed during the movement.

However, this form of the equilibrium point hypothesis was dis-

proven in an elegant experiment (Bizzi et al., 1984). Monkeys

were trained to make a single-joint elbow movement in an

exoskeleton that could rapidlymove the forearm. The task began

at an initial position followed by a forearmmovement to capture a

visual target. After the taskwas learned, themonkeys’ armswere

deafferented. The monkeys were still able to capture the target,

even in a darkened room, suggesting that feedback was not

needed. However, when the arm was quickly displaced to the

target and released at the beginning of the movement, the arm

returned to the initial position and then moved to the

target along the normal path. If a single equilibrium point had

been specified at the target, the arm should have remained at

the target when released. Faced with this result, the original hy-

pothesis was modified to a series of equilibrium points forming

an ‘‘equilibrium trajectory’’ (Flash, 1987). Although this specifica-

tion was hypothesized to take place before the movement

began, other theories suggested that control was taking place

continuously through themovement (Flanagan et al., 1993). Sud-

den displacements of a target in the middle of a reach could be

compensated for quickly with a response that was proportional

to the target shift (Georgopoulos et al., 1981; Massey et al.,

1986), and motor cortical activity, normally modulated through

these tasks, was interrupted with short latency when the target

shift occurred (Georgopoulos et al., 1983a). Indeed, evidence

from neuronal recording experiments suggested that trajectory

specification (as sampled from the motor cortex) begins

150 ms before movement onset but then continues throughout

the movement with the same predictive interval during reaching

(Georgopoulos et al., 1988b) and drawing (Schwartz, 1993,

1994). Taken together, these results show that there is a contin-

uous specification of trajectory that begins before movement

onset and continues as the armmoves. The planning to produce

an arm movement takes place, at least partially, as on-line con-
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trol, and is continuous throughout its duration; strikingly, this

control takes place even when continuous feedback is absent.

A sensory feedback-free control signal was originally invoked

for eye movements. Like the ‘‘ballistic’’ phase of reaching, sac-

cades, the rapid eye movements that allow us to scan the envi-

ronment, seem to take place too rapidly for sensory feedback to

be effective. An ‘‘efferent copy’’ of the motor command to move

was suggested by von Holst and Mittelstaedt (1950). This hypo-

thetical signal was thought to work in parallel to those usedmore

directly to contract muscles. In this initial proposal, the efferent

copy served to ascertain agency during eye movement, distin-

guishing the moving visual surround generated by self-motion

from that produced by theworld itself. The efferent copy concept

was substantiated by gaze perturbations as the headwas rapidly

moved during saccades. Even in the absence of vision (Keller

et al., 1996) and proprioception (Guthrie et al., 1983), subjects

compensated for these perturbations, suggesting that feedback

was not necessary. Evidence for a similar control operation can

also be found for arm movements. For instance, in reaching

tasks in which subjects had to choose a target to acquire, they

sometimes chose incorrectly but could seemingly correct the er-

ror much more rapidly than feedback could accommodate

(Cooke and Diggles, 1984; Higgins and Angel, 1970). This finding

suggests that ‘‘internal’’ recognition of a target error, for instance

by using efferent copy, can lead to corrections without real-time

feedback of the movement. This concept can be expanded even

further as there is evidence that visual feedback of the target can

alsomodify themovement-generation process, albeit in an asyn-

chronous manner. For instance, perturbations of the movement

by shifting the target also elicit a very rapid response (van Son-

deren et al., 1989), even in deafferented subjects with only a

shifted target visible (Bard et al., 1999). When reaching to visual

targets, the eyes saccade to foveate the target before the arm

begins to move, even though the muscles of the eye and

arm are activated almost simultaneously (Biguer et al., 1982;

Prablanc and Martin, 1992). A number of experiments were

performed in which the target was shifted during the saccade

(Pélisson et al., 1986; Prablanc and Martin, 1992; Prablanc

et al., 1986) and showed that the subjects corrected their trajec-

tories quickly (110 ms after movement onset) and smoothly.

These studies were conducted with the subjects’ hands out of

their line of sight and show how extrinsic information can be

incorporated into the ongoing movement generation process.

In opposition to the idea that the initial movement component

in reaching is ‘‘ballistic’’—that it reflects operations that are inde-

pendent of feedback—a number of experiments have shown

that visual information is incorporated into the control of this

component. Specifically, the direction of motion can drive re-

sponses sensed in the peripheral (non-foveal) visual fields, and

this can be contrasted with the position sensitivity of the foveal

fields (Paillard, 1996). In a directional reaching task, seeing the

hand as it starts tomove (Bard et al., 1985), but not before (Blouin

et al., 1993), improves the accuracy of the movement.

These results show that the signals used to control the arm’s

trajectory are transmitted continuously throughout a reach. The

efferent signal for the movement is modifiable by intrinsic errors

and extrinsic cues at the beginning of the movement and by

target modifications during the transport of the arm. Intrinsic



sensation of the moving arm is used in the formulation of the

ongoing commands to the arm. This type of scheme emphasizes

the predictive nature of an efferent operation that can be modi-

fied by sensation of the body and its surroundings.

Feed-Forward Control

Feedback, in which the output of the system is used to regulate

its input, contrasts with movement generated in the absence of

sensation (MacKay, 1965) using feed-forward control. Motor

control theorists and experimentalists have made either-or argu-

ments about these two schemes for more than 100 years (Des-

murget and Grafton, 2003). In practice, the two types of controls

are merged. Modern feed-forward concepts invoke learning, in

which the prediction of an intended action is modified by prior

sensation. ‘‘The idea behind this concept is that the motor sys-

tem can progressively learn to estimate its own behavior in

response to a given command (efferent signal). During themove-

ment, this prediction can be used to estimate the current state of

the motor apparatus and to predict what the final state will be’’

(Desmurget and Grafton, 2003). Further refinement of the feed-

forward idea shows that accurate prediction relies critically on

accurate knowledge of the initial state of the system. At issue

is how often the physical state of the system is assessed for ac-

curate predictions (i.e., updated by feedback). For instance, sub-

jects without somatosensation of their arms were unable to

make accurate movements in the dark. However, when allowed

prior visualization of their limbs, the resulting movements were

near normal (Ghez et al., 1995; Sainburg et al., 1995), and as dis-

cussed above, knowledge of the initial position of the hand and

its motion leads to more accurate reaching in typical individuals.

The utility of prior information before movement supports the

idea of feed-forward control systems since they are determin-

istic—their operation is determined by initial conditions.

Feed-Forward Control Is Learned

Learning is essential for making accurate predictions and, as

such, is a major topic of investigation for systems neuroscien-

tists. The term ‘‘internal model’’ is often used to describe the

prior knowledge, gained by learning, used tomake accurate pre-

dictions of how an intended action will result in the desired

outcome. Internal models are an essential ingredient of for-

ward-control theories of movement. A good example is a study

by Shadmehr and Mussa-Ivaldi (1994), in which human subjects

moved a planar manipulandum to eight different targets equally

spaced around a circle from a center start position task. The sub-

jects could easily make normal movements that were fairly

straight and had characteristic bell-shaped speed profiles of

the speed and time dependency. The manipulandum was then

programmed to produce different types of force fields as the

handle was moved. When the fields were first applied, the sub-

jects’ movements were characteristically distorted, but after

repetition, their trajectories straightened out and matched the

normal movement trajectories that were produced in the control,

unloaded condition. After the subjects learned to compensate

for the imposed force fields, the forces were suddenly removed.

Subjects again made trajectories that were distorted, but this

time, the distortions mirrored those made when the fields were

initially applied. Since the original trajectory was restored when

compensating for the imposed force fields and the trials

following the perturbation were indicative of learning, the authors
took these results to support the idea that subjects were devel-

oping internal models of the forces generated to achieve an

intended trajectory. More specifically, the subjects learned to

predict not only the shape and dynamics of the force field on

the handle but also the combinations and dynamics of the inter-

nal forces generated by their muscles needed to produce the

proper endpoint forces. Referred to as solving the ‘‘inverse’’

problem (going backward from endpoint to internal coordinates),

this process is often separated into kinematics (the combination

of joint displacements needed to produce an endpoint trajectory)

and dynamics (the combination of muscle activations needed to

produce the proper joint torques that are summed to produce

endpoint force). Both inverse problems are complex: there are

many degrees of freedom that could be chosen for a given

endpoint displacement (more degrees of freedom than dimen-

sions of arm movement) and many muscle combinations that

could produce the same joint torque. The torques needed to

generate endpoint movements are dependent on the arm’s

configuration and the external forces imposed on the arm. The

internal model is thus the learned solution to this problem.

Prediction

The concept of amodel trajectory implemented as a set of forces

generated by muscles can be incorporated into a framework of

motor planning. To achieve the desired action in the external

world (e.g., a specific arm trajectory), a set of computations or

‘‘operations’’ (Mountcastle, 1998) need to take place. Theorists

have formulated the idea of coordinate system transformation

as a framework for performing these operations during volitional

reaching. In this framework, a desired target is visualized as a

pattern of light projected on the retina. This position and direc-

tion of the target in ‘‘retinocentric’’ coordinates need to be trans-

formed to a frame that represents the direction of the hand

relative to the target in the coordinate system in which the move-

ment will take place. This process was hypothesized to take

place as a series of steps from retina-, to head-, shoulder-,

and finally hand-centered axes (Flanders et al., 1992; Gordon

et al., 1994; McIntyre et al., 1997; Vindras and Viviani, 1998;

Yardley, 1990). Evidence of planning is supported by findings

that the hand’s trajectory is straight and smooth, ‘‘invariant’’

across a wide range of conditions. When force fields were

applied and maintained (Shadmehr and Mussa-Ivaldi, 1994;

Lackner and Dizio, 1994), compensation was found over

repeated trials. In this situation, a learned adaptation took place

to restore the original trajectory. In other experiments, subjects

quickly compensated for added loads by making smooth,

straight, reaching trajectories when holding a novel weight.

These results suggest that planning occurs in stages. The plan

begins with an intended hand trajectory consisting of a smooth,

straightmovement followed by a transformation to a set of forces

generated by muscle contraction and joint torques to displace

the limb. The forces needed to achieve this trajectory were found

to take place as a secondary process that was fairly independent

from the first. The transformations were considered to be

informed by an internal model of the physical mechanics (the

‘‘plant’’), which accounted for the configuration-dependent force

production of muscles and bones, as well as by the external

forces encountered during the movement. The internal model

is a theoretical construct used to explain how predictions are
Cell 164, March 10, 2016 ª2016 Elsevier Inc. 1125



Figure 1. Diagram of an Optimal Feedback Control Mode
This diagram has been modified from Diedrichsen et al., 2010. See text for
explanation.
made to account for the delays between a generated command,

the action that is produced, and the registration of its conse-

quences. In order to make an accurate prediction, the internal

model has to account for the mechanics used to transform a ki-

nematic plan to an endpoint trajectory.

Models of Control

Recent experiments with human subjects have reinstated the

use of mechanical perturbations during arm movement but in

a wider variety of behaviors such as obstacle avoidance (for a

review, see Scott et al., 2015). Perturbations to ongoing arm

movement again showed learning-dependent compensatory

responses, and this class of experiment has been used to gain

insight into the learning process used for internal models.

‘‘Optimal control theory’’ has been particularly influential in

shaping this work (Scott, 2004). An early account of optimal con-

trol applied to movement generation (Pew and Baron, 1978) was

motivated by the desire to add mathematical rigor and engineer-

ing modeling to descriptive theories put forth by psychologists.

This work, carried out as part of the manned space program,

used a corrupted display of simulated flight information to test

a subject’s ability to compensate for noisy and delayed informa-

tion, with the inference that the learned compensation was anal-

ogous to an internal model update. Learning was described by

an equation that minimized error. Error was considered to be a

‘‘cost.’’ The smaller the cost, the more ‘‘optimal’’ the control.

Subsequently, a number of cost functions were proposed to

inform the internal models pertinent to the motor system. Jerk

(Flash and Hogan, 1985), torque (Uno et al., 1989), energy (Alex-

ander, 1997), effort (Hasan, 1986), and themagnitude of the con-

trol signal (Harris and Wolpert, 1998; Todorov, 2002) were

considered as candidates. These functions could be grouped

into three categories (Kistemaker et al., 2014): control

‘‘effort’’—thought to be reflected as a magnitude-related quan-

tity when the motor system’s output is considered to be net

force; ‘‘dynamics’’ (energy output); and ‘‘kinematics’’ (jerk). In

principle, once a cost function is identified and expressed as

an equation, its minimum can be found with straightforward

least-square methods, resulting in a combination of parameters

that, when realized, result in the optimal condition. For arm

movements the idea is to rank-order a set of possible behaviors

(Flash and Hogan, 1995). However, defining the cost function is

still problematic because often the optimal solution is context

dependent and elusive (Nelson, 1983). In the motor control liter-

ature, this basic theme, incorporating cost functions and the re-

sulting parameters, was extended to include feedback (Pew,

1974), and the scheme became known as ‘‘optimal feedback

control’’ (Hoff and Arbib, 1993; Todorov and Jordan, 2002).

A recent review of this theory (Diedrichsen et al., 2010) is sum-

marized in Figure 1. In this scheme, motor commands ut, in the

form of muscle activation signals, are sent not only to the mus-

cles but to a forward model that estimates the physical system

to predict the next state of the arm x*, in terms of kinematics (po-

sition, velocity). This prediction is sent to a sensory integrator,

which also receives a delayed and noisy sensory signal, y,

from the action generated by a previous command. The plant

(musculoskeletal system and the environment) generates the

next movement increment xt+1 with a corresponding measure-

ment of yt+1. However, when registered in the sensory integrator,
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this sensation has been delayed and degraded (y). At the current

timestep, t, the plant has not yet generated the next step, so the

measurement, y, is from the previous iteration of the loop. The

sensory integrator functions to compensate for the delayed

feedback. Here, a predicted sensation, Hx*, based on the state

predicted by the forward model, is subtracted from the physical

sensation. This difference can be considered as a predicted dis-

tance between successive states. The Kalman gain, K, scales

this prediction. If the physical sensation is considered accurate,

the gain will be large, and confidence in the predicted distance is

high. Conversely, with corrupted sensation, this distance should

be discounted. The predicted distance is then added to (or,

perhaps more conceptually, subtracted) from the predicted

state, and this is used as the estimate of the next state, which,

in the subsequent iteration of the loop, becomes the current

state estimate.

This particular implementation of optimal control theory en-

compasses many of the features discussed in the current litera-

ture. The basic chain of operations can be considered as a

sequence of commands (e.g., trajectory segments) sent both

to the mechanical apparatus and simultaneously, as ‘‘efferent

copy,’’ to an internal model of the mechanical system (skeleto-

motor plus the environment). This ‘‘forward’’ model of the phys-

ical plant, in which forces generate movement (not to be

confused with ‘‘feed-forward control’’), predicts future move-

ment as current action takes place. Since it takes time for a com-

mand to be executed, the current movement was specified by a

former command. This, in addition to the time needed to register

and transmit the sensation of the movement, means that there

will always be a delay between the predicted and actual move-

ment. The delay between these signals complicates calculation

of the error. As shown in Figure 1, a common solution to this

problem is to employ a Kalman filter, an algorithm that compares

current data to predictions of the future. In this scheme, the filter

uses the delayed sensory input and the output of the forward

model as a way of estimating the current state (position along

a trajectory) of the arm. This estimate is used to produce the



next command. The Kalman filter is one example of a broader

class of theories encompassed by the idea of ‘‘Bayesian infer-

ence’’ (Vaziri et al., 2006) in which decisions aremade on the sta-

tistical basis of prior beliefs (historical evidence) and hypotheses

(prediction). An alternative approach to handling the delay be-

tween a current output signal and the delayed sensation of that

output is to assume that the output signal occurs in steps and

that past steps (of the efferent copy) can be stored and

compared to the delayed sensory output (Miall et al., 1993).

This would suggest that the control policy was operating on a de-

layed version of the state variables. As a final alternative to ad-

dressing sensory delay, it has been proposed that an internal

model of sensation can be applied to the delayed sensory input

to predict the current state of the movement (Crevecoeur and

Scott, 2013). This could then be compared to the prediction of

a forward model of the efferent copy.

Control Policy: Costs and Intention

The control policy in Figure 1 can be considered the volitional

component of the model. It generates movement commands

using an inversemodel to transform kinematics tomuscle activa-

tions. In the Diedrichsen et al. (2010) paper, this model is learned

by optimizing a cost function, L. Interestingly, the authors divided

this function in two parts. There is a regularization component,

consisting of internal costs (e.g., effort, kinematics, and dy-

namics, as described above) that occur in generating the move-

ment, and one that is task-based—the intention. The proposed

medium of the regularization component was force magnitude,

which would minimize motor noise and effort. However, as with

any choice of a single optimized variable, there are problems

with this cost function. Muscle co-contraction is a clear violation

of this hypothesis. Force vectors of muscles that contract simul-

taneously often counteract each other so that the net force (vec-

tor sum) is much less than the magnitude of summed muscle

contractile force. Co-contraction could be related, for instance,

to regulating joint impedance (Hogan, 1984) or to preventing un-

wanted movement in skeletal segments sharing common ten-

dons (Schieber and Santello, 2004). Despite problems with

choosing a single cost function, the overall idea of optimizing

control efficiency is attractive. From a control perspective, force

resolution or the number of force ‘‘categories’’ that can be spec-

ified is especially relevant. These categories consist not only of

different levels of force magnitude but may also be defined as

force direction, timing, and distribution through the skeletomotor

apparatus. This formulation is consistent with information theory,

which, in addition to optimal control, is another major approach

to motor control (Accot and Zhai, 1997; Fitts, 1954; Fitts and Pe-

terson, 1964; Georgopoulos and Massey, 1988; Lai et al., 2005;

Meyer et al., 1982, 1988; Zahedi et al., 2010). The basic concept

here is that a certain number of decisions (bits) are needed to

specify the value of the commands (e.g., force levels) sent to

the muscles. These bits can only be transmitted at some

maximum rate (bits/s), determined by the structure of the motor

system. This structure or system constraint is referred to as the

‘‘channel capacity.’’ It is assumed that a movement requires a

certain number of bits and that the speed of the movement

(with continuous control) will be proportional to the length of

time it takes to transmit the needed information through the

channel. Thus, as shown by Fitts (1954), reaches of larger
displacement to smaller targets require more bits and therefore

take a longer time to complete (speed-accuracy tradeoff).

How might the control signal be optimized? Volitional move-

ments are goal driven, and the ability to successfully reach a

goal requires accurate prediction. A relevant example is the

consistent psychophysical finding from reaching studies that

reaching trajectories are optimally smooth (Flash and Hogan,

1985). It takes fewer bits of information to predict a smooth

trajectory (Flash and Hogan, 1995). Maximizing smoothness

minimizes the control burden.

The other component of the proposed control policy is related

to intention, encapsulated in the question: what is the goal of the

movement and how should it be achieved? As we have seen for

movement execution, prediction of the outcome also features

large in this domain. For instance, Friston (Adams et al., 2013),

using arguments first put forth by Helmholtz, proposed an

‘‘active inference’’ scheme based on the idea that the brain,

instead of representing ‘‘sensory images,’’ represents their

causes. The generation of these causes from sensory input is

carried out with an iterative generative model. The estimated

state input to the control policy is replaced by these inferred

causes—e.g., the action that produced the sensation. A larger

difference between the optimal control theory and Friston’s

scheme is in the nature of the command signal. In contrast to

specified muscle contraction in optimal control, Friston pro-

poses that the signal is composed of expected proprioception,

with the idea that this will be compared to actual proprioceptive

signals and, through local reflex circuits in the spinal cord, will be

transformed to effective muscle contraction.

Whether or not the details of this particular theory are valid, the

themes of prediction and causation fit into the evolving cognitive

theories of behavior, which emphasize the incorporation of the

body and its surroundings into the control scheme (Beer, 2008;

Sanz et al., 2008) and where decisions, expressed as command

signals, are based on predictions of actions that will take place in

the physical world. This approach is particularly pertinent when

considering the acts of grasping and manipulation of objects,

which, differently from simple reaching that may not require a

great deal of control, is information rich, requiring detailed posi-

tioning and application of force. Gibson (1979), for instance, pro-

posed the idea of ‘‘affordance,’’ defined as the set of possible

actions that could take place on an object, as a primary

constraint of manipulation. Rather than describing objects by

their physical qualities, Gibson emphasized that graspable,

detachable objects were perceived in terms of the behavior

they afforded. The theory was extended to visual perception,

forming the basis of a school termed ‘‘Ecological Psychology’’

(Turvey, 1977).

The importance of the physical environment also has been

championed in studies of human grasping and manipulation.

For instance, proper placement of the fingers and subsequent

application of force on the object require accurate prediction

of how the object will react as the hand interacts with it. Anticipa-

tion of the sensation that will be encountered upon contact is

evident as the object is visualized, early in reaching, well before

grasping takes place (Gordon et al., 2013), and this was consid-

ered due to memory of previous encounters. Skilled hand use

consists of a series of events in which the hand ismaking contact
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and exerting forces in different configurations with each event

eliciting different sensations. The expectation and registration

of this sensation is used to regulate the sequence of subtasks

composing the movement (Flanagan et al., 2006). This scheme

uses an inverse model to generate commands followed by a for-

ward model to produce expected sensation (Flanagan et al.,

2003). The expectation is dependent on knowledge of how the

object will react to the commanded movement. Extending this

logic to complex, skilled tool use, these theories merge with

those supporting ‘‘embodied cognition,’’ which ‘‘distributes con-

trol and processing to all aspects of the agent (its central nervous

system, the material properties of its musculoskeletal system,

the sensor morphology, and the interaction with the environ-

ment’’ (Pfeifer et al., 2008). In addition to cognitive neuroscience,

these theories are prominent in the fields of artificial intelligence

and robotics (Brooks, 1991a, 1991b, 2002). The acquisition of in-

ternal models that can be used to predict the outcome of future

actions requires learning of body mechanics and the physics of

actions that take place in the environment. Those predictions

become more complex with tool use because movements of

the hand become less directly related to the action of the tool

in the world, essentially dissociating command signals to move

from the intention to act. Clearly, this type of problem falls within

the purview of cognition.

Neural Substrate of Control
To summarize what I have discussed so far, motor control

theory has evolved from concepts of simple reflexes consisting

of obligatory muscle contraction in response to a specific stim-

ulus to those that are approaching explanations of cognition.

Some of these theories have led to behavioral experiments, the

results of which have led to revisions of the motor control princi-

ples. Like almost all engineered control systems, there are very

few, if any, biological systems that are not subject to feedback.

In contrast, even the simplest reflexes cannot be clearly defined

as feedback only, as they are almost always modified by the

changing contexts in which they operate. Early volitional control

schemes were described using the ideas of feed-forward control

in which a movement was completely determined before it

began, but these were rapidly modified to accommodate exper-

imental findings showing that control signals were transmitted

continuously through the movement. At the same time, these

theories were improved to incorporate feedback and the delays

associated with real-world functioning. While most motor psy-

chology experiments use impoverished tasks in the laboratory,

at least current theories recognize the importance of the physical

world in determining the control characteristics of the motor

system. Prediction is a major factor in behavior generation and

is fundamental to motor control theory. Internal models are

invoked to predict future sensory states and the outcome of

motor commands. By extending these models to include the

complexities of the external world, we can begin to build models

that include more complex motor actions such as manipulation

and tool use. Invoking motor control theories that encompass

skilledmanipulation of the external worldmay provide a concrete

avenue for exploring cognitive processing.

Motor control theories have been assembled from observa-

tions of motor behavior, and they help define operational princi-
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ples likely to be contained in a motor control system. However,

there is a major distinction, often overlooked, that separates

these principles from their mechanistic expression in the nervous

system. This problem starts with very basic assumptions used in

describing these theories. We diagram motor control models

with boxes and arrows, where each box denotes some type of

process and the arrows signify input and output to each of these.

Inherent in this type of description is discreteness; the borders of

each box separate processes, and the arrows suggest that the

input and output are singular and synchronized; inputs arrive

as distinct messages and outputs are generated as complete

products. This follows neuroscience dogma, which surmises

function from anatomical connectivity: physical structures in

the CNS are assigned specific functional roles and are intercon-

nected in putative circuits in an attempt to define causal se-

quences of interaction. Theorists adopt these conventions by

warping their diagrams to conformwith those produced bymain-

stream neuroscience. All too often, the motor control theorist at-

tempts to follow through by placing a particular box within a

particular structure of the nervous system. ‘‘. if the nervous sys-

tem is treated as a black box, any model drawn to represent its

operation must be regarded as describing the nervous system’s

actual mode of operation. Some cognitive approaches fail to

make this distinction explicit, and tend to regard such models

as operational analogues.’’ (Young, 1988). While this may be

the way electronic circuits and mechanical systems are de-

signed, it is unlikely that biological systems, and in particular

the nervous system, follow these rules. Indeed, it should be

emphasized that motor control theories are constructs: models

that attempt to elucidate control principles. A problem arises

when components of these models are assigned to the nervous

system. For instance, the cerebellum—with its access to both

afferent sensory signaling and descending output containing

efferent information, its learning-dependent activity patterns,

and with cells that show clear responses to perturbations—has

been hypothesized to contain various aspects of the internal

model (Ebner and Pasalar, 2008; Miall et al., 1993; Pasalar

et al., 2006; Shadmehr and Krakauer, 2008; Wolpert et al.,

1998). Although there is some consistency between model-

based theory and the way cerebellar neurons fire during move-

ment, cells in many other neural structures fire in much the

same way. For example, evidence for formulation of an internal

model can be found in the observation-related activity of

neurons throughout the cerebral cortex (Nelissen et al., 2005,

2011; Rizzolatti et al., 1996; Savaki, 2010) and not only the

cerebellum.

Attempts to reconcile model control theories with brain cir-

cuitry can be seen in works dealing with the latency of a learned

response to perturbation, which is often used to place some

component of motor control within a particular biological control

loop. The idea ofmotor control loops is very old. Long loopswere

found to span from spinal cord tomotor cortex (Francois-Franck,

1887), whereas short loops were confined to the spinal cord and

composed of as few as two neurons for the stretch reflex in mus-

cles (Liddell and Sherrington, 1924). Sherrington (1906), in his

monograph ‘‘The Integrative Action of the Nervous System,’’

separated ‘‘short reflexes,’’ limited to a single limb, from ‘‘long

reflexes,’’ which comprised conjoint action across multiple



body segments. Short reflexes were thought to be elicited from

receptors in the same body part that moved in response to their

activation. Long reflexes were considered to encompass move-

ments across multiple body segments. Sherrington stated that

these ‘‘long series of movements’’ were ‘‘initiated and guided

by ‘distance receptors’’’ such as vision, audition and smell that

sampled the external world. He considered these long reactions

to be mediated by the cerebrum as analogs of volitional move-

ment. Importantly, Sherrington emphasized that there was no

clear separation of short and long pathways, as they are com-

bined through dense networks of interconnections: ‘‘.we find

the neural arcs from these receptors particularly wide and far-

reaching.’’ More recently, the distinctions between classic motor

structures have been blurred by neuronal responses sensitive to

somesthetic input, including skin indentation, muscle stretch,

and joint displacement, to the motor cortex. Passive sensory re-

sponses correspond to theway the same neurons fire during arm

movement (Conrad et al., 1975; Evarts, 1973; Porter and Rack,

1976). Since this input from the portion of the moving limb

matches the output of the motor cortical cell driving that

segment during movement, this was taken as evidence for

‘‘long loop’’ feedback. Perturbations of the arm during a reach

reliably elicit responses in motor cortex with a latency between

20 and 40 ms, which is consistent with long-loop timing. In com-

parison, muscle responses occur about 12 ms after a muscle

stretch, and these are likely mediated by muscle spindles and

mediated by a two-neuron, ‘‘short’’ feedback loop in the spinal

cord. Muscle perturbations in monkey motor cortex were found

with a latency of 30–40ms, only after learning, and this was taken

as evidence that the long loop pathway was readily modifiable

(Evarts, 1973). Using response latency in isolation as an index

to locate learning sites is hazardous. For example, later experi-

ments with perturbations that followed a more random schedule

showed that, although the motor cortical cells responded

consistently, the 30–40 ms EMG response was more variable

(Conrad et al., 1975; Porter and Rack, 1976), suggesting that,

in conditions that preclude learning, there is still consistency in

the motor cortical response and that this is dissociated from

muscle contraction. Feedback and latency considerations

cannot explain this type of result. It should be emphasized that

any role of the motor cortex in a reflex loop has to be viewed in

context of its operation during volitional aspects of movement.

As discussed above, monkeys that were given prior cues of an

impending arm perturbation generated expectation-dependent

motor cortical responses when the disturbance was applied

(Evarts and Tanji, 1974). Furthermore, motor cortical cells have

a task-dependent change in firing rate, well before movement

onset when no movement-related sensory cues are present

(Evarts, 1966a).

Current perturbation studies aimed at elucidating control prin-

ciples still use timing and learning criteria to placemodeled com-

ponents in specific loops (Crevecoeur and Scott, 2013; Kurtzer

et al., 2008; Scott et al., 2015). However, it is important to note

that learned compensatory responses occur at different levels

of the neuroaxis. For instance, it was shown that decerebrate fer-

rets walking on a treadmill could learn to step over an obstacle

after 10–15 steps (Lou and Bloedel, 1988). Similar plasticity

was even found in walking cats with lesions that separated their
spinal cords from the rest of the nervous system (Zhong et al.,

2012).

The Utility of Modeling Neuronal Activity during
Naturalistic Movement
How can theory be combined with empirical studies using

behavioral and neurophysiological methods? In the 1960s and

70s, motor control investigations of neural activity transitioned

away from electroanatomical, perturbation, and otherwise

restricted paradigms toward those involving behaving animals.

One example was the use of awake monkeys in which single-

neuron cortical activity was recorded. Following recording

advances made by Jasper et al. (1960), Evarts (1966b) devel-

oped a skull-mounted microdrive that allowed a microelectrode

to be introduced into the motor cortex for recording extra-

cellular recordings of action potentials as monkeys made trained

movements of their wrists (Evarts, 1966a). A variant of this

recording method (Mountcastle et al., 1975) was used by Geor-

gopoulos in the early 80s (Georgopoulos et al., 1982, 1983b,

1984) with monkeys that performed natural reaching move-

ments. Up to that point, most motor control paradigms were de-

signed to examine the mechanics of movement—for instance,

by restricting movements to a single joint in such a way that

emphasized agonist-antagonist muscle activation. Coordinated,

multi-joint movements could be studied with the introduction of

the center->out paradigm, in which monkeys reached from a

central location on a plane to different peripheral targets located

radially around the start position. Neurons recorded from the

motor cortex were modulated in a way that was related to the di-

rection of the target the monkeys were reaching toward. More

specifically, the firing rates of these neurons, when averaged

over the duration of the movement, could be modeled as a

cosine tuning function that mapped movement direction to

discharge rate. Data plotted as movement direction versus firing

rate fell along a cosine-shaped curve or ‘‘tuning function.’’ The

tuning had a single, maximum firing rate corresponding to a

‘‘preferred’’ movement direction. All directions of movement

were spanned by the function, which had a minimum firing rate

in the direction opposite from the preferred direction. The broad

cosine tuning means that these neurons change their firing rates

for every change of movement. Since these functions are maps

of direction to firing rate, they are referred to as ‘‘encoding’’

because they function as movement direction codes. However,

in practice, they cannot be used to directly ‘‘decode’’ movement

direction by going from discharge rate to direction. Because the

cosine function is symmetrical about its preferred direction, each

discharge rate maps to two directions (except at the peak rate,

which corresponds to a single preferred direction). Furthermore,

if trial-by-trial noise is added to the function, only very crude es-

timates of direction can be made. The cosine tuning function,

because it incorporates all movement directions, provided a

way out of the decoding dilemma. Motor cortical neurons have

different preferred directions, which, combined with broad tun-

ing, means that many neurons change their firing rates simulta-

neously as directions change. For any movement direction,

each neuron will fire at a different rate in a way that depends

on its preferred direction. This was captured by the population

vector algorithm that Georgopoulos developed. This method
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used vectors to represent each neuron’s tuning function. A vec-

tor for each cell pointed in its preferred direction with a magni-

tude proportional to its firing rate. The collection of weighted

cell vectors added together resulted in the ‘‘population vec-

tor’’—the decoded predicted direction of movement for a partic-

ular reach. This simple method used encoding (cosine fit of

discharge rate to direction) and decoding (vector summation)

to accurately predict movement direction.

Since this original observation, cosine tuning of movement di-

rection has been found in many structures of the nervous system

and can be considered a general principle of movement genera-

tion (van Hemmen and Schwartz, 2008). Since the direction-

firing rate relation could also be well characterized by other

statistical distributions (e.g., Gaussian, Poisson, or von Mise),

why emphasize the cosine fit? Mechanistically, it may seem un-

likely that there is a specific neural operation that ‘‘calculates’’

cosine functions. Computationally, one might view cosine tuning

as a convenience that allows a vector approach to directional

coding. However, there may be some theoretical utility to the

cosine tuning and vector representation. Cosine tuning, from a

vector perspective, can be thought of as a projection of move-

ment direction on to a cell’s preferred direction (Schwartz,

2007) and expressed as an inner product between vectors.

This is a geometric analog to cross-correlation. With a slight

extension, this type of correlation could be considered a way

to convey directional information through the nervous system.

Correlation between elements generates statistical structure in

systems. When the system is sampled with analytical tools,

this structure can be recognized and used to gain insight into

system states that, for instance, are related to learning (Sadtler

et al., 2014) and attention (Velliste et al., 2014). The identification

of ‘‘latent drivers,’’ as factors that induce correlational structure,

can be used to describe task-dependent system organization

(Chase and Schwartz, 2011; Chase et al., 2010; Churchland

et al., 2012; Kaufman et al., 2014; So et al., 2012). An advantage

of these correlation-based techniques is that they are based on

neuron-neuron interactions without a priori assumption of

neuron-behavior causation.

The population vector method has proven to be a robust

decoding method for movement. When used on short time-

scales during movement, the method can predict details of

the arm’s trajectory during reaching and drawing (Georgo-

poulos et al., 1988a; Moran and Schwartz, 1999a; Schwartz,

1993, 1994; Schwartz and Moran, 1999, 2000). This work also

showed that the population vector is an analog of endpoint

velocity, as it not only predicts instantaneous direction but

speed as well (Moran and Schwartz, 1999b). Once again,

it should be emphasized that the population vector is a

construct. It does not exist physically as a network node

that gathers directional information with an output of endpoint

velocity.

The findings of broad directional tuning and the validity of the

population vector approach can be used to help define prelimi-

nary principles of motor control. Widespread neural modulation

takes place throughout the neural axis during volitional move-

ment. Individual neurons encode consistent, but relatively

weak, movement information. Yet consideration of population

activity provides a detailed prediction of movement trajectory.
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Movement velocity is readily extracted from the population.

This supports a major tenet of motor control theory: movement

kinematics, represented in neuronal firing patterns, are predic-

tive of the upcoming movement.

Toward Prosthetics for Movement
Results collected over the last 20 years from cortical recordings

during reaching and characterization of the correspondence

between movement kinematics and neuronal firing form the ba-

sis of the brain-controlled interfaces (BCI) used for neural pros-

thetic movement. The extent of our ability to extract detailed

movement signals from motor cortex is demonstrated in the

movements made by paralyzed individuals as they operate

high-performance prosthetic arms and hands to recover near-

normal functionality. In essence, this technology is restoring

the communication channel disrupted by paralyzing pathology.

Using the basic concepts of kinematic encoding andwidespread

population decoding, this work began with monkeys (Isaacs

et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Wessberg

et al., 2000) and paralyzed humans (Hochberg et al., 2006; Ken-

nedy et al., 2000) controlling a cursor on a computer screen.

Subsequently, the number of parameters that could be decoded

simultaneously increased from three dimensions of cursor con-

trol, to four (Velliste et al., 2008), seven (Collinger et al., 2012),

and ten degrees of freedom using a robot (Wodlinger et al.,

2015). The last two demonstrations were of a paralyzed woman

operating a high-performance prosthetic arm and hand to carry

out tasks of daily living. She could move the arm through 3D

space, orient its wrist in three dimensions, and change the shape

of its hand using four basic configurations as building blocks. By

beginning with monkey experiments in which subjects pro-

gressed from movements of their arms in 3D space, to closing

of the hand, orientation of the wrist and then to shaping of their

hands, we were eventually able to build decoding algorithms

that could extract ten movement parameters simultaneously.

From the perspective of basic science, this means that individual

neurons encode many aspects of movement in their firing pat-

terns. At the same time, these findings, incorporated into the

extraction algorithms used for neural prosthetics, are offering

new therapies to those who are paralyzed.

Use of BCI also allowed the study of the role of learning in

movement generation. When brain-controlled interfaces are

used with virtual reality—for example, when moving cursors in

a computer display—the internal model of the physical me-

chanics (the ‘‘plant’’) can be either removed or altered in precise

ways from the control loop. This is an ideal situation to study

learning. Because operating the device is directly dependent

on the way neurons in the recorded sample are modulated dur-

ing the task, any change in task performance has to be related to

the firing patterns of these neurons. Learning takes place as the

decoded movement is displayed back to the subject, and unde-

sired movement is modified by changing the way neurons in the

sampled population fire during the task. The direct linkage be-

tween firing rate and movement (e.g., the computer cursor) is

governed by the encoding model. In early demonstrations, for

instance, it was shown that there was a direct correlation be-

tween the model’s fit to the data and performance of the task.

Over successive days, both the fit and the performance



increased (Carmena et al., 2003; Taylor et al., 2002), suggesting

that the encoding model was being learned. In addition to the

importance that learning has in improving BCIs (Koyama et al.,

2010; Orsborn et al., 2014; Zhang et al., 2012), the BCI task

can be used explicitly to study the learning process by purpose-

fully distorting the encoding model. This makes it possible to

visualize neuronal adaptation to the imposed perturbation

(Chase et al., 2012; Ganguly et al., 2011; Jarosiewicz et al.,

2008; Legenstein et al., 2009; Sadtler et al., 2014). Essentially,

this methodology allows internal model theories to be examined

directly (Golub et al., 2013, 2015).

A next frontier with neural prosthetics is dexterous interaction

with objects. The ability of human subjects to grasp and manip-

ulate objects is limited with current decoders (Wodlinger et al.,

2015). Beyond the sheer amount of information required to carry

out this type of behavior, this limitation may be due to funda-

mental inadequacies of themodel itself. For instance, the current

kinematicmodel assumes an endpoint-centered coordinate sys-

tem. For object manipulation, behavioral considerations suggest

that the coordinate system may be object centered (Jeannerod,

2003). An essential component of dexterous object manipulation

is the correct application of forces between the contact surfaces

of the hand and fingers and those of the object. Although some

studies have looked at the way hand forces are encoded by neu-

ral activity during grasping (Georgopoulos et al., 1992; Kalaska

et al., 1989; Sergio et al., 2005), details of this encoding with

respect to hand-object force vectors are unknown. To achieve

dexterity with neural prosthetics that approaches that of normal

human behavior, it is likely that we will need to distinguish brain

activity patterns corresponding to the intention to act from con-

trol signals of the hand itself. This subtle distinction is present

with tool use (Umiltà et al., 2008). As we move toward this objec-

tive, considerations normally ascribed to cognitive function,

such as learning, object identification, intended action using

the object, and the prediction of future consequences, will be

unavoidable.

Conclusions
Motor control theory and experimentation have progressed from

descriptions of simple reflexes to the frontiers of cognitive pro-

cessing. Models have become more sophisticated as theories

begin to account for the differences between biological function

and conventional engineered control approaches. An increasing

appreciation of the complexity within themotor system suggests

that the current view of separate processing steps, contained in

discrete nervous system loci connected in fixed circuits, should

be modified. Pertinent neural operations are widely distributed

throughout the system with statistical interactions governing

functional connectivity. Instead of assigning functional labels to

pieces of the system, appropriate samples of neural activity

can be used to better understand the underlying principles

used to control movement. Despite the difficulty of studying

such a system, large-scale recordings of neural activity, com-

bined with rich behavioral paradigms, have already led to

methods for extracting high-fidelity movement information that

restore coordinated, useful movement to paralyzed individuals.

Cognitive neuroscience and systems neurophysiology are

converging on the idea of movement as communication of inten-
tion from the brain to the external world. A revolution is occurring

asmachines are being designed to infer and operate on intention

and to predict future action (Levinson et al., 2011; Muelling et al.,

2015; Stentz et al., 2015). In biological systems, these factors

are evident as the incorporation of expectation in even the

simplest neuronal operations. Theorists use the concept of inter-

nal models to generate these predictions. BCI technology is be-

ing used to directly examine these previously covert constructs.

Further advances promise not only increased functionality of

neural prosthetic devices but also pathways to basic scientific

investigation of cognitive processing.
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